
A Minimum Divergence Recipe for VBEM

Niko Brümmer

October 14, 2010

We derive a new way to perform minimum-divergence model updates (M-
step) in the VBEM algorithm. As example we work out some details of how
to apply it to Patrick Kenny’s (Odyssey 2010) heavy-tailed PLDA speaker
recognition model.

1 VBEM in a nutshell

In VBEM, we work with L, a lowerbound to the model log-likelihood:

L =

∫
Q(h) log

P (x, h|λ)

Q(h)
dh ≤ logP (x|λ) (1.1)

Here x is observed training data, λ is the to-be-optimized model, h represents
all of the hidden variables and Q is any probability density over h. The
VBEM algorithm alternates between the E-step, which finds Q subject to
constraints, to maximize L while λ is fixed; and the M-step, which for a
fixed Q, finds λ to maximize L. Here we discuss only the M-step, which we
augment with a minimum-divergence strategy.

2 M-step with minimum divergence

2.1 Model assumptions

We work with a model of the form λ = (V,Π), such that P (x, h|λ) =
P (x|h,V)P (h|Π). We also assume that the model is overparametrized, in
the following sense. We assume:

• For any prior parameter Π, there is a standard form, denoted Π̄. For
example, if Π = (a, b) are the parameters of a gamma distribution,
then Π̄ = (a, a).

1

• There is a change of variables, h̃ = φ(h), such that if h is distributed
with parameter Π, then h̃ is distributed with parameter Π̄.

• For any such transformation φ, and any V, there exists a Ṽ, such that:

P
(
x
∣∣φ−1(h̃

)
,V) = P (x|h̃, Ṽ) (2.1)

for every x.

The goal is to maximize L, w.r.t. both V and Π, subject to the constraint
that Π ends up in standard form.

2.2 Lower bound decomposition

We decompose L as:

L =

∫
Q(h) log

P (x|h,V)P (h|Π)

Q(h)
dh (2.2)

=

∫
Q(h) logP (x|h,V) dh−

∫
Q(h) log

Q(h)

P (h|Π)
dh (2.3)

=

∫
Q(h) logP (x|h,V) dh−D

(
Q(h)‖P (h|Π)

)
(2.4)

where the second term is the KL-divergence from the posterior to the prior
for the hidden variables.

2.3 M-step recipe

We assume Q has been chosen by means of the E-step and is given here. The
M-step can be broken down into the following sub-steps:

1. Minimize the second term (divergence) of L w.r.t. Π, to find Πmd.

2. Find an invertible transformation, φ, so that if h̃ = φ(h), then

P (h̃|φ,Πmd) = 1
J
P
(
φ−1(h̃)

∣∣Πmd

)
= P (h̃|Π̄md) (2.5)

where J = | det(J)|, is the absolute value of the determinant of the
Jacobian of the transformation φ. Also transform Q:

Q̃(h̃) = 1
J
Q
(
φ−1(h̃)

)
(2.6)

If we work with a conjugate prior, then Q is of the same form as the
prior and transforms in a similar way. Notice that since this step is
just a change variables of the divergence integral (with dh = 1

J
dh̃), it

keeps the value of the divergence term unchanged.

2

3. Now also apply the same change of variables to the first term of L, and
then plug in (2.6) and (2.1):∫

Q(h) logP (x|h,V) dh

=

∫
1
J
Q
(
φ−1(h̃)

)
logP

(
x
∣∣φ−1(h̃),V

)
dh̃

=

∫
Q̃(h̃) logP (x|h̃, Ṽ) dh̃

(2.7)

Note that it is enough to know that Ṽ exists—we do not have to also
compute Ṽ to satisfy the above equality. We next proceed to maximize
the last form w.r.t. Ṽ, to give Vml. The information about the change
of variables is automatically transferred to Vml via the transformed
posterior—we do not explicitly have to adapt V to absorb the change
of variables as in other variants of minimum divergence.

2.4 M-step result

The end result of the M-step is now λ∗ = (Vml, Π̄), for which we have:

L(Q,V,Π) ≤ L(Q,V,Πmd) = L(Q̃, Ṽ, Π̄md) ≤ L(Q̃,Vml, Π̄md) (2.8)

as can be seen by following the above steps in order from left to right.
The model λ∗ and the posterior Q̃ are now both in standard form and

ready for another application of the E-step.

3 Example: hierarchical hidden variables

Here we work out some details of how to apply this minimum divergence
recipe for Patrick Kenny’s (Odyssey 2010) heavy-tailed PLDA speaker recog-
nition model. The recipe has more steps than explained above, because of
the hierarchical nature of the model.

3.1 Model

In our notation, the model for a single speaker can be described as:

P (x|y,λ) = P (x|Vy + m) (3.1)

P (y|s,λ) = N (y|0, 1
s
I) (3.2)

P (s|λ) = G(s|a, a) (3.3)

3

where G denotes the gamma distribution and N the multivariate normal
distribution, of which details are given in the appendix.

Here we consider just the heavy-tailed distribution of the speaker variable
y, which is generated with the help of the hidden ‘speaker-scale’ variable s.
Note P (x|Vy + m) may also be a heavy-tailed distribution, and it can be
treated similarly, with additional ‘channel-scale’ hidden variables.

3.2 Lower bound decomposition

The lower bound is a sum over K speakers of the form L =
∑K

i=1 Li. The
contribution due to a single speaker is:

Li =

∫
Qi(y)P (xi|Vy + m) dy

−
∫
Qi(s)

[∫
Qi(y) log

Qi(y)

N (y|µ, 1
s
Σ)

dy

]
ds

−
∫
Qi(s) log

Qi(s)

G(s|a, b)
ds

(3.4)

where we have plugged in the priors with general (non-standard) parameters.
Note that there are three terms here, rather than just two as we had above.

The VB posteriors are of the same form as the priors. The given poste-
rior parameters, are subscripted, which distinguishes them from the to-be-
optimized prior parameters. The posteriors are:

Qi(y) = N (y|µi,Σi), Qi(s) = G(s|ai, bi) (3.5)

L is now expressed accordingly as:

L = O1 −O2 −O3 (3.6)

where:

O1 =
K∑
i=1

∫
Qi(y)P (xi|Vy + m) dy (3.7)

O2 =
K∑
i=1

∫
Qi(s)D

(
N (µi,Σi)‖N (µ, 1

s
Σ)
)
ds (3.8)

O3 =
K∑
i=1

D
(
G(ai, bi)‖G(a, b)

)
(3.9)

4

3.3 M-step recipe

The M-step optimizes the three components of L in reverse order:

1. We expand O3 using the formula for gamma divergence (see appendix):

O3 =
K∑
i=1

D
(
G(ai, bi)‖G(a, b)

)
=

K∑
i=1

log
Γ(a)

Γ(ai)
+ a log

bi
b

+ ψ(ai)(ai − a) + ai
b− bi
bi

(3.10)

To minimize, we differentiate first w.r.t. b:

∂O3

∂b
= −Ka

b
+

K∑
i=1

ai
bi

(3.11)

which is zeroed at:

a

b
= s̄ =

1

K

K∑
i=1

ai
bi

(3.12)

Now plug b = a
s̄

into O3 and differentiate w.r.t. a:

∂O3

∂a
=

K∑
i=1

ψ(a) + log bi − log a− 1 + log s̄− ψ(ai) +
ai
bis̄

(3.13)

which is zeroed by solving for amd in:

ψ(amd)− log(amd) = − log(s̄) +
1

K

K∑
i=1

ψ(ai)− log(bi) (3.14)

after which we recover bmd = amd

s̄
. Keep amd as the new model param-

eter and use bmd below.

2. Next we do a change of variables s̃ = αs, so that if s ∼ G(amd, bmd),
then s̃ ∼ G(amd, amd). To do this (see appendix), let α = bmd

amd
= 1

s̄
.

Observe also s = s̄s̃. Transform each Qi(s):

Q̃i(s̃) = 1
α
Qi

(
1
α
s̃
)

= 1
α
G(1

α
s̃|ai, bi) = G(s̃|ai, biαi

) = G(s̃|ãi, b̃i) (3.15)

where ãi = ai and b̃i = s̄bi.

5

3. Notice that in the form 1
s
Σ a change of scale in s can be absorbed into

Σ, which satisfies our required modelling assumption. As explained
above, we don’t need to explicitly do this update to Σ (although it is
trivial to do). We can instead proceed directly to find the optimum Σ
by minimizing the expected divergence O2, now expressed in terms of
Q̃i(s̃):

O2 =
K∑
i=1

∫
Q̃i(s̃)D

(
N (µi,Σi)‖N (µ, 1

s̃
Σ)
)
ds̃

=
K∑
i=1

〈
D
(
N (µi,Σi)‖N (µ, 1

s̃i
Σ)
)〉

=
K∑
i−1

〈
−N

2
− 1

2
log |s̃iPΣi|+ 1

2
tr
(
s̃iP
(
Σi + (µi − µ)(µi − µ)′

))〉
(3.16)

where we defined the prior precision matrix P = Σ−1. Differentiating
w.r.t. µ and equating to zero gives:

µmd =

∑K
i=1

〈
s̃i
〉
µi∑K

i=1

〈
s̃i
〉 =

1

K

K∑
i=1

〈
s̃i
〉
µi (3.17)

where1
〈
s̃i
〉

= ãi

b̃i
. Now (using the new value of µ) let:

Ci =
〈
si
〉(

Σi + (µmd − µi)(µmd − µi)
′) (3.18)

Then differentiating O2 w.r.t P gives:

dO2 =
K∑
k=1

−1
2
d log |P|+ 1

2
d tr(PCi)

= −1
2
K tr(P−1dP) + 1

2

K∑
i=1

tr(CidP)

(3.19)

which is zeroed at:

Σmd = P−1 = 1
K

K∑
i=1

Ci (3.20)

1Here
〈
s̃i

〉
denotes posterior expectation. Do not confuse with prior expectation,

〈
s̃
〉

=
1.

6

4. Now do a change of variables, ỹ = Jy+k, so that if y ∼ N (µmd,Σmd),
then ỹ ∼ N (0, I). We need (see appendix) J−1 = chol(Σmd) and
k = −Jµmd. Then use these to transform the posteriors, so that

Q̃i(ỹ) = N (ỹ|µ̃i, Σ̃i) (3.21)

where

µ̃i = Jµi + k = J(µi − µmd) (3.22)

Σ̃i = JΣiJ
′ (3.23)

5. Finally, maximize O1 w.r.t. (V,m), where we plug in the transformed
posteriors:

(Vml,mml) = arg max
V,�

∫
Q̃(ỹ)P (xi|Vỹ + m) dỹ (3.24)

The end-result of this M-step is (amd,Vml,mml).

4 Appendix

4.1 Density transformations

gamma: For a transformation s̃ = φ(s) = αs, where α > 0, the Jacobian
determinant is J = α and the gamma density, G, transforms as:

P (s|a, b) = G(s|a, b) =
ba

Γ(a)
sa−1e−bs (4.1)

P (s̃|φ, a, b) = 1
α
G
(
s̃
α

∣∣a, b) = G
(
s̃
∣∣a, b

α

)
(4.2)

To massage the distribution of s̃ to have a standard distribution, with
〈s̃〉 = a

b
= 1, we need a = b

α
, or α = b

a
.

normal: For a transformation ỹ = φ(y) = Jy + k, the Jacobian is J, and
J = | det J|. The inverse transform is y = φ−1(ỹ) = J−1(ỹ − k). The
multivariate normal density transforms as:

P (y|µ,Σ) = N (y|µ,Σ)

=
1√

det(2πΣ)
exp

(
− 1

2
(y − µ)′Σ−1(y − µ)

) (4.3)

P (ỹ|φ,µ,Σ) = 1
J
N
(
φ−1(ỹ)

∣∣µ,Σ)
= N

(
ỹ
∣∣Jµ + k,JΣJ′

) (4.4)

7

To massage ỹ to have standard N(0, I) distribution, we need2: J−1 =
chol(Σ), and k = −Jµ.

4.2 KL-divergences

normal: The KL-divergence between two N -dimensional normal distribu-
tions is:

D
(
N (µ0,Σ0)‖N (µ,Σ)

)
= −N

2
− 1

2
log |Σ−1Σ0|+ 1

2
tr
(
Σ−1

(
Σ0 + (µ0 − µ)(µ0 − µ)′

)) (4.5)

gamma: The KL-divergence between two gamma distributions is:

D
(
G(a0, b0)‖G(a, b)

)
= log

Γ(a)

Γ(a0)
+ a log

b0

b
+ ψ(a0)(a0 − a) + a0

b− b0

b0

(4.6)

2We use the Cholesky transform definition: chol(Σ) chol(Σ)′ = Σ. Watch out, MAT-
LAB’s function chol() returns the transpose of this definition!

8

	VBEM in a nutshell
	M-step with minimum divergence
	Model assumptions
	Lower bound decomposition
	M-step recipe
	M-step result

	Example: hierarchical hidden variables
	Model
	Lower bound decomposition
	M-step recipe

	Appendix
	Density transformations
	KL-divergences

