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We derive a new way to perform minimum-divergence model updates (M-
step) in the VBEM algorithm. As example we work out some details of how
to apply it to Patrick Kenny’s (Odyssey 2010) heavy-tailed PLDA speaker
recognition model.

1 VBEM in a nutshell

In VBEM, we work with L, a lowerbound to the model log-likelihood:

/Q Px, hi)‘) dh < log P(x|\) (1.1)

Here x is observed training data, A is the to-be-optimized model, h represents
all of the hidden variables and () is any probability density over h. The
VBEM algorithm alternates between the E-step, which finds @) subject to
constraints, to maximize L while A is fixed; and the M-step, which for a
fixed @, finds A to maximize L. Here we discuss only the M-step, which we
augment with a minimum-divergence strategy.

2 M-step with minimum divergence

2.1 Model assumptions

We work with a model of the form A = (V,II), such that P(x,h|A) =
P(x|h, V)P(h|II). We also assume that the model is overparametrized, in
the following sense. We assume:

e For any prior parameter IT, there is a standard form, denoted II. For
example, if IT = (a,b) are the parameters of a gamma distribution,
then IT = (a, a).



e There is a change of variables, h = ¢(h), such that if h is distributed
with parameter II, then h is distributed with parameter II.

e For any such transformation ¢, and any V, there exists a V, such that:
P(x|¢7(h),V) = P(x|h, V) (2.1)
for every x.

The goal is to maximize L, w.r.t. both V and II, subject to the constraint
that IT ends up in standard form.

2.2 Lower bound decomposition

We decompose L as:

- __ P(xlh, V)P(h|TT)

L= /Q(h)l g 0 dh (2.2)
B Q(h)
- /Q(h) log P(x|h, V) dh — /Q(h) log gy 1 (2.3)
_ / Q(k) log P(x|h, V') dh — D(Q(h)|[P(h|IT)) (2.4)

where the second term is the KL-divergence from the posterior to the prior
for the hidden variables.

2.3 M-step recipe

We assume () has been chosen by means of the E-step and is given here. The
M-step can be broken down into the following sub-steps:

1. Minimize the second term (divergence) of L w.r.t. I, to find II,,4.
2. Find an invertible transformation, ¢, so that if h = ¢(h), then
P(h|¢, ML) = LP(¢7(h)|IL,0q) = P(h|T,0) (2.5)

where J = |det(J)|, is the absolute value of the determinant of the
Jacobian of the transformation ¢. Also transform Q:

Q(h) = 5Q (o7 (1)) (2.6)

If we work with a conjugate prior, then Q is of the same form as the
prior and transforms in a similar way. Notice that since this step is
just a change variables of the divergence integral (with dh = %dﬁ), it
keeps the value of the divergence term unchanged.
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3. Now also apply the same change of variables to the first term of L, and

then plug in (26) and (Z1):
/ Q(h)log P(x|h, V) dh
:/§Q(¢—1(ﬁ))1ogP(x\¢—1(B),V) dh (2.7)
_ / O(h) log P(x|h, V) dih

Note that it is enough to know that V exists—we do not have to also
compute V to satisfy the above equality. We next proceed to maximize
the last form w.r.t. V, to give V,,;. The information about the change
of variables is automatically transferred to V,, via the transformed
posterior—we do not explicitly have to adapt V to absorb the change
of variables as in other variants of minimum divergence.

2.4 M-step result
The end result of the M-step is now A* = (V,,;, IT), for which we have:
L(Q,V,II) < L(Q,V,I4) = L(Q,V,M,q) < L(Q, Vyu, Tg)  (2.8)

as can be seen by following the above steps in order from left to right.
The model A* and the posterior () are now both in standard form and
ready for another application of the E-step.

3 Example: hierarchical hidden variables

Here we work out some details of how to apply this minimum divergence
recipe for Patrick Kenny’s (Odyssey 2010) heavy-tailed PLDA speaker recog-
nition model. The recipe has more steps than explained above, because of
the hierarchical nature of the model.

3.1 Model

In our notation, the model for a single speaker can be described as:
P(x|y,A) = P(x|Vy + m) (3.1)
P(y|s,A) = N(y|0, 1) (3:2)

P(s|A) = G(sla,a)



where G denotes the gamma distribution and N the multivariate normal
distribution, of which details are given in the appendix.

Here we consider just the heavy-tailed distribution of the speaker variable
y, which is generated with the help of the hidden ‘speaker-scale’ variable s.
Note P(x|Vy 4+ m) may also be a heavy-tailed distribution, and it can be
treated similarly, with additional ‘channel-scale’ hidden variables.

3.2 Lower bound decomposition

The lower bound is a sum over K speakers of the form L = Efil L;. The
contribution due to a single speaker is:

L—/Q P(x:[Vy + m) dy

(s 4 o Qily) s
- [ [ won gt ay| 5.9

- [aw 1og£#f>b)ds

where we have plugged in the priors with general (non-standard) parameters.
Note that there are three terms here, rather than just two as we had above.

The VB posteriors are of the same form as the priors. The given poste-
rior parameters, are subscripted, which distinguishes them from the to-be-
optimized prior parameters. The posteriors are:

Qi(y) = N(y|pi, X4), Qi(s) = G(slai, b;) (3.5)

L is now expressed accordingly as:

L=0,—0,— 0, (3.6)

where:
0, = Z/Q P(x;|Vy + m)dy (3.7)
0, = Z [ QD (a2 W 1 1)) ds (3.8)

ZD (ai, b;)||G(a, b)) (3.9)



3.3 M-step recipe

The M-step optimizes the three components of L in reverse order:

1. We expand Oj using the formula for gamma divergence (see appendix):

G(a;, b)||G(a, b))

b—0;
bi

+alogb—+¢<az>< 4 —a) +

i

To minimize, we differentiate first w.r.t. b:

005 a K a;
o e,

which is zeroed at:
K
_ 1 a;
TR
Now plug b = ¢ into O3 and differentiate w.r.t. a:

8(’)3

K
Zw +10gbi—loga—1+log§—¢(ai)+ba_i_
;S

which is zeroed by solving for a,,q in:

D0a) — Tom(aa) = — log(3) + 7 > (@) — log(h)

=1

after which we recover by,q = “2¢
eter and use b,,q below.

2. Next we do a change of variables § = as, so that if s ~ G(ay,

ds
then § ~ G(ama, @ma). To do this (see appendix), let a = = ad
Observe also s = 55. Transform each Q;(s):

where a; = a; and b; = sb;.

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

. Keep a,,4 as the new model param-

V)

(3.15)



3. Notice that in the form %2 a change of scale in s can be absorbed into
3), which satisfies our required modelling assumption. As explained
above, we don’t need to explicitly do this update to X (although it is
trivial to do). We can instead proceed directly to find the optimum X
by minimizing the expected divergence Oy, now expressed in terms of

O,

(10, )N (11, £)) )

Il
_Mw ||Mw ||Mx

/ Gu(3) DN (i SN (11, 1) d5
> (P
> (-

L —1log|5P%;| + 4 tr( P (2 + (1 — ) (1 — F‘)/)>>
(3.16)

where we defined the prior precision matrix P = 7. Differentiating
w.r.t. u and equating to zero gives:

Hona = # = Z< D (3.17)

Wheri <s = b— w (using the new value of p) let:

= () (Bt + (Mg — 1) (thng — 1)) (3.18)

Then differentiating Oy w.r.t P gives:

K
dOy =Y " —1dlog |P| + 1d tr(PC;)

k=1
N (3.19)
1K tr(P~'dP) + %Z (CidP)

which is zeroed at:

T=P'=1>"C (3.20)

'Here < > denotes posterior expectation. Do not confuse with prior expectation, <§> =



4. Now do a change of variables, y = Jy +Kk, so that if y ~ N (t,,,4, Xma),
then y ~ AN(0,I). We need (see appendix) J~! = chol(X,,4) and

k = —Ju,,;- Then use these to transform the posteriors, so that
Qi(¥) = N (¥, ) (3.21)
where
pi = I + k= I — Bing) (3.22)
¥ =J%J (3.23)
5. Finally, maximize O; w.r.t. (V, m), where we plug in the transformed
posteriors:
(Vo) = argryse [ QF)PGx[VE +m) g (3.24)
sH

The end-result of this M-step is (@ma, Vi, ).

4 Appendix

4.1 Density transformations

gamma: For a transformation § = ¢(s) = as, where o > 0, the Jacobian
determinant is J = a and the gamma density, G, transforms as:

P(s|a,b) = G(s|a,b) = %s“lebs (4.1)
P(3l6,0.1) = 26(3la.8) = G(3la. ) 42

To massage the distribution of § to have a standard distribution, with

(3)=2=1,weneeda= 2 ora=2
b ? a’ a

normal: For a transformation y = ¢(y) = Jy + k, the Jacobian is J, and
J = |det J|. The inverse transform is y = ¢~ '(y) = J~'(y — k). The
multivariate normal density transforms as:

P(y|p,3) = N(ylp, %)

- e ey e )
P(F¢, 1 T) = N (071 (F) |1, 2) "

=N (¥|Iu+k,IZT)



To massage y to have standard N(0,I) distribution, we needﬂ J! =
chol(%), and k = —Jpu.

4.2 KL-divergences

normal: The KL-divergence between two /N-dimensional normal distribu-
tions is:

— 5 — Llog =7 S|+ §tr (T (S0 + (110 — )10 — 1)) ) (45)
gamma: The KL-divergence between two gamma distributions is:
D(G(ao, bo)Gla, b))
= log % + alogb_bo + b(a)(ao — a) + aob ;Obo (4.6)

2We use the Cholesky transform definition: chol(X) chol(X)" = X. Watch out, MAT-
LAB’s function chol() returns the transpose of this definition!
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